4.7 Article

Enhanced resolution and sensitivity acoustic-resolution photoacoustic microscopy with semi/unsupervised GANs

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-40583-x

关键词

-

向作者/读者索取更多资源

Acoustic-resolution photoacoustic microscopy (AR-PAM) enables visualization of biological tissues at depths of several millimeters with superior optical absorption contrast. However, the lateral resolution and sensitivity of AR-PAM are generally lower than those of optical-resolution PAM (OR-PAM) owing to the intrinsic physical acoustic focusing mechanism. In this study, a computational strategy using two generative adversarial networks (GANs) was employed to perform semi/unsupervised reconstruction with high resolution and sensitivity in AR-PAM.
Acoustic-resolution photoacoustic microscopy (AR-PAM) enables visualization of biological tissues at depths of several millimeters with superior optical absorption contrast. However, the lateral resolution and sensitivity of AR-PAM are generally lower than those of optical-resolution PAM (OR-PAM) owing to the intrinsic physical acoustic focusing mechanism. Here, we demonstrate a computational strategy with two generative adversarial networks (GANs) to perform semi/unsupervised reconstruction with high resolution and sensitivity in AR-PAM by maintaining its imaging capability at enhanced depths. The b-scan PAM images were prepared as paired (for semi-supervised conditional GAN) and unpaired (for unsupervised CycleGAN) groups for label-free reconstructed AR-PAM b-scan image generation and training. The semi/unsupervised GANs successfully improved resolution and sensitivity in a phantom and in vivo mouse ear test with ground truth. We also confirmed that GANs could enhance resolution and sensitivity of deep tissues without the ground truth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据