4.7 Article

Effects of porous structure on the deformation failure mechanism of cement sheaths for wellbores

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-35398-9

关键词

-

向作者/读者索取更多资源

The influence of porous and double-layer structures on the deformation failure of cement sheaths under hydraulic pressure was studied. The research revealed the effects of these structures on breakdown pressure, plastic failure zone, radial deformation, and stress distribution, providing insights into failure modes, failure paths, and interactions with metal casings.
The influence and mechanism of porous structure on the deformation failure of cement sheaths under hydraulic pressure is still unclear. To solve this problem, a net slurry cement sheath and a liquid silicon cement sheath were prepared by using a cement material and a liquid silicon suspension. The distributions of the pore radius and spatial location were analyzed using computed tomography scanning and statistics to obtain their probability density distribution functions. Based on the distribution functions, the single-layer and double-layer porous reconstruction models of the net slurry cement sheath and liquid silicon cement sheath were constructed using a FLAC 3D program. A series of numerical simulations were conducted to study the deformation failure of the cement sheaths under in situ stress and hydraulic pressure. The effects of the porous and double-layer structures on the breakdown pressure, plastic failure zone, radial deformation, and stress distribution of the cement sheaths were analyzed. As a result, the mechanisms for the influence of the porous and double-layer structures on the failure mode, failure path, and interaction between the cement sheath and metal casing were revealed. The results of this research provide a theoretical basis for an in-depth understanding of the failure mechanisms of porous cement sheaths.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据