4.8 Article

Manipulating Magneto-Optic Properties of a Chiral Polymer by Doping with Stable Organic Biradicals

期刊

NANO LETTERS
卷 16, 期 9, 页码 5451-5455

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.6b01874

关键词

Faraday rotation; polymers; chirality; biradicals

资金

  1. Air Force Office of Scientific Research [FA95500610398]

向作者/读者索取更多资源

We report the first example of tuning the large magneto-optic activity of a chiral polymer by addition of stable organic biradicals. The spectral dispersion of Verdet constant, which quantifies magneto-optic response, differs substantially between the base polymer and the nanocomposite. We employed a microscopic model, supported by atomistic calculations, to rationalize the behavior of this nanocomposite system. The suggested mechanism involves magnetic coupling between helical conjugated polymer fibrils, with spatially delocalized helical p-electron density, and the high density of spin states provided by the biradical dopants, which leads to synergistic enhancement of magneto-optic response. Our combined experimental and theoretical studies reveal that the manipulation of magnetic coupling in this new class of magneto-optic materials offers an opportunity to tailor the magnitude, sign, and spectral dispersion of the Verdet constant over a broad range of wavelengths, from the UV to the near-IR. This provides a new strategy for creating conformable materials with extraordinary magneto-optic activity, which can ultimately enable new applications requiring spatially and temporally resolved measurement of extremely weak magnetic fields. In particular, magneto-optic materials, presently employed in technologies like optical isolators and optical circulators, could be used in ultrasensitive optical magnetometers. This, in turn, could open a path toward mapping of brain activity via optical magnetoencephalography.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据