4.7 Article

Interface microstructure effects on dynamic failure behavior of layered Cu/Ta microstructures

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-37831-5

关键词

-

向作者/读者索取更多资源

This study uses molecular dynamics simulations to characterize the plasticity contributions and damage evolution behavior of various interface microstructures. The results suggest that pre-deformation affects both the dynamic strength and correlation with interface energy.
Structural metallic materials with interfaces of immiscible materials provide opportunities to design and tailor the microstructures for desired mechanical behavior. Metallic microstructures with plasticity contributors of the FCC and BCC phases show significant promise for damage-tolerant applications due to their enhanced strengths and thermal stability. A fundamental understanding of the dynamic failure behavior is needed to design and tailor these microstructures with desired mechanical responses under extreme environments. This study uses molecular dynamics (MD) simulations to characterize plasticity contributors for various interface microstructures and the damage evolution behavior of FCC/BCC laminate microstructures. This study uses six model Cu/Ta interface systems with different orientation relationships that are as- created, and pre-deformed to understand the modifications in the plasticity contributions and the void nucleation/evolution behavior. The results suggest that pre-existing misfit dislocations and loading orientations (perpendicular to and parallel to the interface) affect the activation of primary and secondary slip systems. The dynamic strengths are observed to correlate with the energy of the interfaces, with the strengths being highest for low-energy interfaces and lowest for high-energy interfaces. However, the presence of pre-deformation of these interface microstructures affects not only the dynamic strength of the microstructures but also the correlation with interface energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据