4.8 Article

Efficient Photothermoelectric Conversion in Lateral Topological Insulator Heterojunctions

期刊

NANO LETTERS
卷 17, 期 1, 页码 214-219

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.6b03851

关键词

Thermopower; thermoelectric conversion; topological insulator; lateral heterostructure; p-n heterojunction

资金

  1. Institute for Basic Science [IBSR011-D1]
  2. Korea Institute of Science and Technology Information (KISTI) [KSC-2016-C3-0042]
  3. Ministry of Science & ICT (MSIT), Republic of Korea [IBS-R011-D1-2017-A00] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Tuning the electron and phonon transport properties of thermoelectric materials by nanostructuring has enabled improving their thermopower figure of merit. Three-dimensional topological insulators, including many bismuth chalcogenides, attract increasing attention for this purpose, as their topologically protected surface states are promising to further enhance the thermoelectric performance. While individual bismuth chalcogenide nanostructures have been studied with respect to their photothermoelectric properties, nanostructured p-n junctions of these compounds have not yet been explored. Here, we experimentally investigate the room temperature thermoelectric conversion capability of lateral heterostructures consisting of two different three-dimensional topological insulators, namely, the n-type doped Bi2Te2Se and the p-type doped Sb2Te3. Scanning photocurrent microscopy of the nanoplatelets reveals efficient thermoelectric conversion at the p-n heterojunction, exploiting hot carriers of opposite sign in the two materials. From the photocurrent data, a Seebeck coefficient difference of Delta S = 200 mu V/K was extracted, in accordance with the best values reported for the corresponding bulk materials. Furthermore, it is in very good agreement with the value of Delta S = 185 mu V/K obtained by DFT calculation taking into account the specific doping levels of the two nanostructured components.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据