4.7 Article

Genomic-driven nutritional interventions for radiotherapy-resistant rectal cancer patient

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-41833-8

关键词

-

向作者/读者索取更多资源

This study utilizes machine learning to explore the space of bioactive molecules in food, identifying potential modulators that can improve radiotherapy outcomes. It provides phytochemically-enriched recipes that encapsulate the benefits of discovered radiotherapy modulators. Through genomic-driven network machine learning and domain knowledge, potential radioresponse modulators were identified.
Radiotherapy response of rectal cancer patients is dependent on a myriad of molecular mechanisms including response to stress, cell death, and cell metabolism. Modulation of lipid metabolism emerges as a unique strategy to improve radiotherapy outcomes due to its accessibility by bioactive molecules within foods. Even though a few radioresponse modulators have been identified using experimental techniques, trying to experimentally identify all potential modulators is intractable. Here we introduce a machine learning (ML) approach to interrogate the space of bioactive molecules within food for potential modulators of radiotherapy response and provide phytochemically-enriched recipes that encapsulate the benefits of discovered radiotherapy modulators. Potential radioresponse modulators were identified using a genomic-driven network ML approach, metric learning and domain knowledge. Then, recipes from the Recipe1M database were optimized to provide ingredient substitutions maximizing the number of predicted modulators whilst preserving the recipe's culinary attributes. This work provides a pipeline for the design of genomic-driven nutritional interventions to improve outcomes of rectal cancer patients undergoing radiotherapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据