4.7 Article

Hydrogen peroxide signal photosynthetic acclimation of Solanum lycopersicum L. cv Micro-Tom under water deficit

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-40388-y

关键词

-

向作者/读者索取更多资源

The study investigates the effects of foliar application of hydrogen peroxide (H2O2) on tomato plants' photosynthetic metabolism during water scarcity and recovery. The findings suggest that 1 mM H2O2 application increases the maximum rate of RuBisCO carboxylation and contributes to dry mass accumulation in well-watered plants, while 2xH(2)O(2) treatment enhances stress tolerance and improves relative water content in water deficit plants.
The current climate change setting necessitates the development of methods to mitigate the effects of water scarcity to ensure the sustainability of agricultural activities.f Hydrogen peroxide (H2O2) is a plant signaling molecule that can trigger metabolic defense mechanisms in response to adverse environmental circumstances like as drought. The purpose of this study was to investigate if foliar application of H2O2 stimulates modifications in photosynthetic metabolism for adaptation of tomato plants to a period of water deficit and recovery. The study, which was carried out in a factorial scheme, tested plants subjected to two water conditions (well-watered plants and plants subjected to water deficit), as well as foliar application of 1 mM H2O2 (zero, one, or two applications, 24 h after the first), and was evaluated in two moments, during the deficit period and after recovery. Foliar application of 1 mM H2O2 resulted in a 69% increase in the maximum rate of RuBisCO carboxylation in well-watered plants, contributing to tomato photosynthetic adjustment. H2O2 treatment resulted in a 37% increase in dry mass in these plants. In plants subjected to water deficiency, 2xH(2)O(2) increased stress tolerance by reducing the maximal rate of RuBisCO carboxylation by only 18%, but in plants that did not receive H2O2 treatment, the reduction was 86% in comparison to the wet plants. Plants exposed to a water shortage and given 2xH(2)O(2) stored sucrose in the leaves and had a 17% higher relative water content than plants not given H2O2. Thus, H2O2 foliar treatment can be used in tomato management to induce drought tolerance or to boost photosynthetic activity and dry mass formation in well-watered plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据