4.7 Article

Aptamer-based assay for rapid detection, surveillance, and screening of pathogenic Leptospira in water samples

期刊

SCIENTIFIC REPORTS
卷 13, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-023-40120-w

关键词

-

向作者/读者索取更多资源

This study presents the development of an aptamer-based assay for rapid, sensitive, and cost-effective detection of pathogenic Leptospira. The aptamer is conjugated to gold nanoparticles, resulting in a colorimetric response in the presence of L. interrogans. The assay exhibits a detection limit of 57 CFU/mL and demonstrates high specificity and reproducibility in detecting pathogenic Leptospira in water samples.
Leptospirosis is a potentially fatal waterborne infection caused by Leptospira interrogans, impacting both humans and animals in tropical regions. However, current diagnostic methods for detecting pathogenic Leptospira have sensitivity, cost, and time limitations. Therefore, there is a critical need for a rapid, sensitive, and cost-effective detection method. This study presents the development of an aptamer-based assay for pathogenic Leptospira detection. Aptamers targeting Leptospira were generated using the SELEX method and screened for binding affinity with major Leptospiral outer membrane proteins through in silico analysis. The aptamer with the highest binding affinity was selected for further evaluation. To enable visual detection, the aptamer was conjugated to gold nanoparticles (AuNPs), resulting in a colorimetric response in the presence of L. interrogans. The aptamer-AuNP-based colorimetric assay exhibited a detection limit of 57 CFU/mL and demonstrated high specificity and reproducibility in detecting pathogenic Leptospira in water samples. This aptamer-based assay represents a significant advancement in leptospirosis diagnostics, offering a rapid, sensitive, and cost-effective approach for detecting pathogenic Leptospira. Its potential for epidemiological applications, such as outbreak source identification and improved prevention, diagnosis, and treatment, particularly in resource-limited settings, highlights its importance in addressing the challenges associated with leptospirosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据