4.6 Article

Photocatalytic Performance of Sol-Gel Prepared TiO2 Thin Films Annealed at Various Temperatures

期刊

MATERIALS
卷 16, 期 15, 页码 -

出版社

MDPI
DOI: 10.3390/ma16155494

关键词

TiO2 thin film; sol-gel process; photocatalysis; thin film characterization

向作者/读者索取更多资源

Titanium dioxide (TiO2) thin films have photocatalytic properties and can be used for recycling and maintenance. Factors affecting their performance include nanocrystalline size, surface morphology, and phase composition, which need to be better studied and correlated.
Titanium dioxide (TiO2) in the form of thin films has attracted enormous attention for photocatalysis. It combines the fundamental properties of TiO2 as a large bandgap semiconductor with the advantage of thin films, making it competitive with TiO2 powders for recycling and maintenance in photocatalytic applications. There are many aspects affecting the photocatalytic performance of thin film structures, such as the nanocrystalline size, surface morphology, and phase composition. However, the quantification of each influencing aspect needs to be better studied and correlated. Here, we prepared a series of TiO2 thin films using a sol-gel process and spin-coated on p-type, (100)-oriented silicon substrates with a native oxide layer. The as-deposited TiO2 thin films were then annealed at different temperatures from 400 & DEG;C to 800 & DEG;C for 3 h in an ambient atmosphere. This sample synthesis provided systemic parameter variation regarding the aspects mentioned above. To characterize thin films, several techniques were used. Spectroscopic ellipsometry (SE) was employed for the investigation of the film thickness and the optical properties. The results revealed that an increasing annealing temperature reduced the film thickness with an increase in the refractive index. Atomic force microscopy (AFM) was utilized to examine the surface morphology, revealing an increased surface roughness and grain sizes. X-ray diffractometry (XRD) and UV-Raman spectroscopy were used to study the phase composition and crystallite size. The annealing process initially led to the formation of pure anatase, followed by a transformation from anatase to rutile as the annealing temperature increased. An overall enhancement in crystallinity was also observed. The photocatalytic properties of the thin films were tested using the photocatalytic decomposition of acetone gas in a home-built solid (photocatalyst)-gas (reactant) reactor. The composition of the gas mixture in the reaction chamber was monitored using in situ Fourier transform infrared spectroscopy. Finally, all of the structural and spectroscopic characteristics of the TiO2 thin films were quantified and correlated with their photocatalytic properties using a correlation matrix. This provided a good overview of which film properties affect the photocatalytic efficiency the most.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据