4.8 Article

Highly Efficient and Air-Stable Inorganic Perovskite Solar Cells Enabled by Polylactic Acid Modification

期刊

ADVANCED ENERGY MATERIALS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202300738

关键词

-

向作者/读者索取更多资源

A polylactic acid (PLA) modification approach is reported to improve the performance of mixed-halide inorganic perovskites solar cells (PSCs). PLA modification effectively passivates surface defects, induces secondary grain growth, and changes the surface region of perovskite from n- to p-type, resulting in less carrier recombination and lower energy loss. The modified PSCs exhibit high power conversion efficiencies (PCEs) and improved air stability.
Inorganic perovskite solar cells (PSCs) suffer from serious carrier recombination and open-circuit voltage loss because of surface defects and unfavorable energy level alignment. Herein, a polylactic acid (PLA) modification approach to improve the performance of mixed-halide inorganic perovskites is reported. First, the surface defects are effectively passivated through strong interaction between CO in PLA and undercoordinated Pb2+. Second, secondary grain growth is induced by PLA modification, resulting in larger grain sizes. Third, PLA modification makes the surface region of perovskite change from n- to p-type, favoring charge transport from perovskite to the hole transport layer (HTL). The PLA modified films enable PSCs with less nonradiative recombination and lower energy loss. Consequently, record PCEs of 19.12% and 18.05% are achieved for CsPbI2.25Br0.75 and CsPbI2Br PSCs, respectively. The PSC with an active area of 1 cm(2) shows a PCE of 16.41%. A PCE of 14.70% is achieved for HTL-free PSC with carbon electrode. In addition, the PSC with PLA modification shows significantly improved air stability due to the hydrophobic PLA coating. This work suggests that PLA surface modification is an effective approach to achieving efficient, stable, scalable, and low-cost inorganic PSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据