4.8 Article

Interface Engineering Boosting High Power Density and Conversion Efficiency in Mg2Sn0.75Ge0.25-Based Thermoelectric Devices

期刊

ADVANCED ENERGY MATERIALS
卷 13, 期 32, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.202301350

关键词

electrode contact interfaces; high-performance thermoelectric devices; interface design strategy; Mg2Sn0 75Ge0 25

向作者/读者索取更多资源

This article provides a design strategy for the electrode contact interface of Mg2Sn0.75Ge0.25-based TE devices, which exhibits high bonding strength, low contact resistivity, and excellent stability. The stability of the interface is confirmed by in situ transmission electron microscopy analysis, which reduces the chemical potential gradient and increases the diffusion activation energy barrier. This interface design strategy could be applied to construct high-performance devices using advanced TE materials.
Electrode contact interfaces for practical thermoelectric (TE) devices require high bonding strength, low specific contact resistivity, and superb stability. Herein, the state-of-the-art Cu2MgFe/Mg2Sn0.75Ge0.25 interface is designed for Mg2Sn0.75Ge0.25-based TE devices, adhering to the general strategy of high bonding propensity, thermal expansion matching, diffusion passivation, and dopant inactivation. The interfacial stability is verified by the in situ transmission electron microscopy analysis, thereby confirming the contributions from decreasing the chemical potential gradient and increasing the diffusion activation energy barrier. The single-leg device exhibits a high power density (& omega;(max)) of 2.6 W cm(-2) and conversion efficiency (& eta;(max)) of 8% under a temperature difference (& UDelta;T) of 370 & DEG;C, which is the record-breaking value in comparison to other Mg-2(Si, Ge, Sn)-based TE devices. Additionally, a two-couple device with p-type Bi2Te3 shows an excellent & omega;(max) of 1.3 W cm(-2) and & eta;(max) of 5.4% under a & UDelta;T of 270 & DEG;C, comparable to commercial Bi2Te3 devices. The proposed interface design strategy provides a general technique for constructing high-performance devices using cutting-edge TE materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据