4.8 Article

Transition-State Stabilization by Secondary Orbital Interactions between Fluoroalkyl Ligands and Palladium During Reductive Elimination from Palladium(aryl)(fluoroalkyl) Complexes

期刊

ACS CATALYSIS
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.3c02648

关键词

fluoroalkylation; palladium catalysis; reductive elimination; DFT calculations; secondary orbital interactions

向作者/读者索取更多资源

Palladium-catalyzed fluoroalkylations of aryl halides are important reactions for the synthesis of biologically active compounds. This study investigates the effects of fluoroalkyl ligands on the reaction mechanism and finds that secondary orbital interactions play a key role in determining the reaction barrier.
Palladium-catalyzed fluoroalkylations of aryl halides are valuable reactions for the synthesis of fluorinated, biologically active molecules. Reductive elimination from an intermediate Pd(aryl)(fluoroalkyl) complex is the step that forms the C(aryl)C(fluoroalkyl) bond, and this step typically requires higher temperatures and proceeds with slower rates than the reductive elimination of nonfluorinated alkylarenes from the analogous Pd(aryl)(alkyl) complexes. The experimental rates of this step correlate poorly with common parameters, such as the steric property or the electron-withdrawing ability of the fluoroalkyl ligand, making the prediction of rates and the rational design of Pdcatalyzed fluoroalkylations difficult. Therefore, a systematic study of the features of fluoroalkyl ligands that affect the barrier to this key step, including steric properties, electron-withdrawing properties, and secondary interactions, is necessary for the future development of fluoroalkylation reactions that occur under milder conditions and that tolerate additional types of fluoroalkyl reagents. We report computational studies of the effect of the fluoroalkyl (RF) ligand on the barriers to reductive elimination from Pd(aryl)(RF) complexes (R-F = CF2CN, CF2C(O)Me, etc.) containing the bidentate ligand di-tert-butyl(2-methoxyphenyl)phosphine (L). The computed Gibbs free-energy barriers to reductive elimination from these complexes suggest that fluoroalkylarenes should form quickly at room temperature for the fluoroalkyl ligands we studied, excluding R-F = CF3, CF2Me, C2F5, CF2CFMe2, CF2Et, CF(2)iPr, or CF(2)tBu. Analyses of the transition-state structures by natural bond orbital (NBO) and independent gradient model (IGMH) approaches reveal that orbital interactions between the Pd center and a hydrogen atom or p-acid bonded to the a-carbon atom of the RF ligand stabilize the lowest-energy transition states of Pd(aryl)(RF) complexes. Comparisons between conformers of transition-state structures suggest that the magnitude of such stabilizations is 4.79.9 kcal/mol. In the absence of these secondary orbital interactions, a more electron-withdrawing fluoroalkyl ligand leads to a higher barrier to reductive elimination than a less electron-withdrawing fluoroalkyl ligand. Computations on the reductive elimination from complexes containing para-substituted aryl groups on palladium reveal that the barriers to reductive elimination from complexes containing more electron-rich aryl ligands tend to be lower than those to reductive elimination from complexes containing less electron-rich aryl ligands when the fluoroalkyl ligands of these complexes can engage in secondary orbital interactions with the metal center. However, the computed barriers to reductive elimination do not depend on the electronic properties of the aryl ligand when the fluoroalkyl ligands do not engage in secondary orbital interactions with the metal center.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据