4.8 Article

Highly sensitive and broadband meta-mechanoreceptor via mechanical frequency-division multiplexing

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-41222-9

关键词

-

向作者/读者索取更多资源

Bio-mechanoreceptors have inspired the design of micro-motion sensors, but achieving high sensitivity and broadband sensing remains a challenge. In this study, researchers developed a Metamaterial Mechanoreceptor (MMR) that mimics rat vibrissae. The MMR uses piezoelectric resonators with distributed zero effective masses, enabling highly sensitive and broadband micro-motion sensing. The MMR offers promising applications in spatio-temporal sensing, remote-vibration monitoring, and smart-driving assistance.
Bio-mechanoreceptors capable of micro-motion sensing have inspired mechanics-guided designs of micro-motion sensors in various fields. However, it remains a major challenge for mechanics-guided designs to simultaneously achieve high sensitivity and broadband sensing due to the nature of resonance effect. By mimicking rat vibrissae, here we report a metamaterial mechanoreceptor (MMR) comprised of piezoelectric resonators with distributed zero effective masses featuring a broad range of local resonances, leading to near-infinite sensitivity for micro-motion sensing within a broad bandwidth. We developed a mechanical frequency-division multiplexing mechanism for MMR, in which the measured micro-motion signal is mechanically modulated in non-overlapping frequency bands and reconstructed by a computational multi-channel demodulation approach. The maximum sensitivity of MMR is improved by two orders of magnitude compared to conventional mechanics-guided mechanoreceptors, and its bandwidth with high sensitivity is extendable towards both low-frequency and high-frequency ranges in 0-12 kHz through tuning the local resonance of each individual sensing cell. The MMR is a promising candidate for highly sensitive and broadband micro-motion sensing that was previously inaccessible for mechanics-guided mechanoreceptors, opening pathways towards spatio-temporal sensing, remote-vibration monitoring and smart-driving assistance. There's a trade-off between the sensitivity and bandwidth for mechanics guided sensor designs. Here, authors report a mechanical sensor comprised of piezoelectric resonators with near infinite effective piezoelectric coefficients, leading to highly sensitive and broadband micromotion sensing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据