4.8 Article

Lean-water hydrogel electrolyte for zinc ion batteries

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-39634-8

关键词

-

向作者/读者索取更多资源

A lean-water hydrogel electrolyte is developed for zinc ion batteries, with fast ion transportation, extended stability, and reversible zinc plating/stripping. The hydrogel contains a molecular lubrication mechanism and balances ion transfer, anode stability, electrochemical stability, and resistance. It shows excellent cycling stability and capacity retentions at high and low current rates, meeting the needs of flexible devices.
Solid polymer electrolytes (SPEs) and hydrogel electrolytes were developed as electrolytes for zinc ion batteries (ZIBs). Hydrogels can retain water molecules and provide high ionic conductivities; however, they contain many free water molecules, inevitably causing side reactions on the zinc anode. SPEs can enhance the stability of anodes, but they typically possess low ionic conductivities and result in high impedance. Here, we develop a lean water hydrogel electrolyte, aiming to balance ion transfer, anode stability, electrochemical stability window and resistance. This hydrogel is equipped with a molecular lubrication mechanism to ensure fast ion transportation. Additionally, this design leads to a widened electrochemical stability window and highly reversible zinc plating/ stripping. The full cell shows excellent cycling stability and capacity retentions at high and low current rates, respectively. Moreover, superior adhesion ability can be achieved, meeting the needs of flexible devices. Excess water in hydrogel-based zinc ion batteries causes side reactions, but reduced water content results in low conductivities. Here, authors develop a lean-water hydrogel based on molecular lubrication mechanism for fast ion transportation, extended stability, and reversible Zinc plating/stripping.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据