4.8 Article

Structural basis for a degenerate tRNA identity code and the evolution of bimodal specificity in human mitochondrial tRNA recognition

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-40354-2

关键词

-

向作者/读者索取更多资源

Animal mitochondrial gene expression relies on specific interactions between nuclear-encoded aminoacyl-tRNA synthetases and mitochondria-encoded tRNAs. Their evolution involves an antagonistic interplay between strong mutation pressure on mtRNAs and selection pressure to maintain their essential function. A human mitochondrial seryl-tRNA synthetase and mtRNA(Ser) complex reveals a rewiring of intermolecular recognition rules driven by strong mutation pressure on mtRNA genes.
Animal mitochondrial gene expression relies on specific interactions between nuclear-encoded aminoacyl-tRNA synthetases and mitochondria-encoded tRNAs. Their evolution involves an antagonistic interplay between strong mutation pressure on mtRNAs and selection pressure to maintain their essential function. To understand the molecular consequences of this interplay, we analyze the human mitochondrial serylation system, in which one synthetase charges two highly divergent mtRNA(Ser) isoacceptors. We present the cryo-EM structure of human mSerRS in complex with mtRNA(Ser(UGA)), and perform a structural and functional comparison with the mSerRS-mtRNA(Ser(GCU)) complex. We find that despite their common function, mtRNA(Ser(UGA)) and mtRNA(Ser(GCU)) show no constrain to converge on shared structural or sequence identity motifs for recognition by mSerRS. Instead, mSerRS evolved a bimodal readout mechanism, whereby a single protein surface recognizes degenerate identity features specific to each mtRNA(Ser). Our results show how the mutational erosion of mtRNAs drove a remarkable innovation of intermolecular specificity rules, with multiple evolutionary pathways leading to functionally equivalent outcomes. Aminoacyl-tRNA synthetases catalyze the ligation of amino acids to their cognate tRNAs. Here the authors report the cryo-EM structure of a human mitochondrial seryl-tRNA synthetase & BULL;mtRNA(Ser) complex showing how strong mutation pressure on mtRNA genes drove a rewiring of intermolecular recognition rules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据