4.8 Article

An avalanche-and-surge robust ultrawide-bandgap heterojunction for power electronics

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-40194-0

关键词

-

向作者/读者索取更多资源

In this study, NiO/Ga2O3 heterojunctions with smaller reverse recovery, higher switching speed, and a robustness competitive to that of conventional homojunctions were reported. Avalanche and surge robustness involve fundamental carrier dynamics under high electric field and current density, and are prerequisites for power devices in power electronics applications. The heterojunction formed between n-type gallium oxide and p-type nickel oxide breaks the trade-off between robustness and switching speed in conventional homojunctions, and removes a key hurdle to advance ultra-wide bandgap semiconductor devices for power industrial applications.
Avalanche and surge robustness are fundamental for power devices to survive overvoltage and overcurrent stresses in typical applications. Here, authors report NiO/Ga2O3 heterojunctions with smaller reverse recovery, higher switching speed, and a robustness competitive to that of conventional homojunctions. Avalanche and surge robustness involve fundamental carrier dynamics under high electric field and current density. They are also prerequisites of any power device to survive common overvoltage and overcurrent stresses in power electronics applications such as electric vehicles, electricity grids, and renewable energy processing. Despite tremendous efforts to develop the next-generation power devices using emerging ultra-wide bandgap semiconductors, the lack of effective bipolar doping has been a daunting obstacle for achieving the necessary robustness in these devices. Here we report avalanche and surge robustness in a heterojunction formed between the ultra-wide bandgap n-type gallium oxide and the wide-bandgap p-type nickel oxide. Under 1500 V reverse bias, impact ionization initiates in gallium oxide, and the staggered band alignment favors efficient hole removal, enabling a high avalanche current over 50 A. Under forward bias, bipolar conductivity modulation enables the junction to survive over 50 A surge current. Moreover, the asymmetric carrier lifetime makes the high-level carrier injection dominant in nickel oxide, enabling a fast reverse recovery within 15 ns. This heterojunction breaks the fundamental trade-off between robustness and switching speed in conventional homojunctions and removes a key hurdle to advance ultra-wide bandgap semiconductor devices for power industrial applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据