4.8 Article

Atomic-level structure determination of amorphous molecular solids by NMR

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-40853-2

关键词

-

向作者/读者索取更多资源

In this study, the atomic-level ensemble structure of the amorphous form of the drug AZD4625 was determined by combining solid-state NMR experiments with molecular dynamics simulations and machine-learned chemical shifts. Preferred conformations and intermolecular interactions in the amorphous sample were analyzed to understand the stabilization of the amorphous form of the drug.
Structure determination of amorphous materials remains challenging, owing to the disorder inherent to these materials. Nuclear magnetic resonance (NMR) powder crystallography is a powerful method to determine the structure of molecular solids, but disorder leads to a high degree of overlap between measured signals, and prevents the unambiguous identification of a single modeled periodic structure as representative of the whole material. Here, we determine the atomic-level ensemble structure of the amorphous form of the drug AZD4625 by combining solid-state NMR experiments with molecular dynamics (MD) simulations and machine-learned chemical shifts. By considering the combined shifts of all 1H and 13C atomic sites in the molecule, we determine the structure of the amorphous form by identifying an ensemble of local molecular environments that are in agreement with experiment. We then extract and analyze preferred conformations and intermolecular interactions in the amorphous sample in terms of the stabilization of the amorphous form of the drug.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据