4.8 Article

Spinal cord repair is modulated by the neurogenic factor Hb-egf under direction of a regeneration-associated enhancer

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-40486-5

关键词

-

向作者/读者索取更多资源

Zebrafish can regenerate and regain locomotor ability after spine injuries, unlike mammals. The neurogenic factor Hb-egf promotes spinal cord regeneration in zebrafish and is regulated by an enhancer that can also direct expression in neonatal mice.
Zebrafish can regenerate after paralyzing spine injuries and regain locomotor ability, unlike mammals. Here authors show that the neurogenic factor Hb-egf promotes spinal cord regeneration in zebrafish and is regulated by an enhancer that can similarly direct expression in the pro-regenerative setting of neonatal mice. Unlike adult mammals, zebrafish regenerate spinal cord tissue and recover locomotor ability after a paralyzing injury. Here, we find that ependymal cells in zebrafish spinal cords produce the neurogenic factor Hb-egfa upon transection injury. Animals with hb-egfa mutations display defective swim capacity, axon crossing, and tissue bridging after spinal cord transection, associated with disrupted indicators of neuron production. Local recombinant human HB-EGF delivery alters ependymal cell cycling and tissue bridging, enhancing functional regeneration. Epigenetic profiling reveals a tissue regeneration enhancer element (TREE) linked to hb-egfa that directs gene expression in spinal cord injuries. Systemically delivered recombinant AAVs containing this zebrafish TREE target gene expression to crush injuries of neonatal, but not adult, murine spinal cords. Moreover, enhancer-based HB-EGF delivery by AAV administration improves axon densities after crush injury in neonatal cords. Our results identify Hb-egf as a neurogenic factor necessary for innate spinal cord regeneration and suggest strategies to improve spinal cord repair in mammals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据