4.8 Article

Manipulating microRNA miR408 enhances both biomass yield and saccharification efficiency in poplar

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-39930-3

关键词

-

向作者/读者索取更多资源

Modifying plant lignin pathway to enhance saccharification efficiency often results in growth penalty. However, overexpression of Pag-miR408 in poplar can improve saccharification efficiency and growth, and laccase genes are the targets of Pag-miR408.
Modifying plant lignin pathway to enhance saccharification efficiency is often associated with growth penalty. Here, the authors show that overexpression of Pag-miR408 in poplar leads to enhanced saccharification efficiency and growth in both laboratory and field conditions, and laccase genes are the targets of Pag-miR408. The conversion of lignocellulosic feedstocks to fermentable sugar for biofuel production is inefficient, and most strategies to enhance efficiency directly target lignin biosynthesis, with associated negative growth impacts. Here we demonstrate, for both laboratory- and field-grown plants, that expression of Pag-miR408 in poplar (Populus alba x P. glandulosa) significantly enhances saccharification, with no requirement for acid-pretreatment, while promoting plant growth. The overexpression plants show increased accessibility of cell walls to cellulase and scaffoldin cellulose-binding modules. Conversely, Pag-miR408 loss-of-function poplar shows decreased cell wall accessibility. Overexpression of Pag-miR408 targets three Pag-LACCASES, delays lignification, and modestly reduces lignin content, S/G ratio and degree of lignin polymerization. Meanwhile, the LACCASE loss of function mutants exhibit significantly increased growth and cell wall accessibility in xylem. Our study shows how Pag-miR408 regulates lignification and secondary growth, and suggest an effective approach towards enhancing biomass yield and saccharification efficiency in a major bioenergy crop.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据