4.8 Article

Long-range, non-local switching of spin textures in a frustrated antiferromagnet

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-39883-7

关键词

-

向作者/读者索取更多资源

Recent research has shown that antiferromagnetic order can be controlled by electrical current, with potential applications in information processing and storage. In FexNbS2, this switching effect occurs non-locally, implying that magnetic order can be changed at a distance much larger than the spin diffusion length of the material. Antiferromagnetic spintronics is an emerging field in quantum technologies that utilizes the coupling between spin and orbital degrees of freedom in exotic materials.
Several recent works have demonstrated current based control of antiferromagnetic order, with the potential that such switching could be used for information processing and storage. Here, Haley et al demonstrate that in FexNbS2, this switching is non-local, with magnetic order changing due to an applied current at distances much larger than the spin diffusion length in the material. Antiferromagnetic spintronics is an emerging area of quantum technologies that leverage the coupling between spin and orbital degrees of freedom in exotic materials. Spin-orbit interactions allow spin or angular momentum to be injected via electrical stimuli to manipulate the spin texture of a material, enabling the storage of information and energy. In general, the physical process is intrinsically local: spin is carried by an electrical current, imparted into the magnetic system, and the spin texture will then rotate in the region of current flow. In this study, we show that spin information can be transported and stored non-locally in the material FexNbS2. We propose that collective modes can manipulate the spin texture away from the flowing current, an effect amplified by strong magnetoelastic coupling of the ordered state. This suggests a novel way to store and transport spin information in strongly spin-orbit coupled magnetic systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据