4.8 Article

XCP1 cleaves Pathogenesis-related protein 1 into CAPE9 for systemic immunity in Arabidopsis

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-40406-7

关键词

-

向作者/读者索取更多资源

Proteolytic activation of cytokines plays a crucial role in regulating immunity in diverse organisms. This study discovered a caspase-like enzyme, XCP1, that is responsible for the proteolytic release of the immunomodulatory cytokine CAPE9 from PR1 in Arabidopsis. The activity of XCP1 is enhanced by salicylic acid, and it is required for the induction of systemic immunity triggered by pathogen-associated molecular patterns.
Proteolytic activation of cytokines regulates immunity in diverse organisms. In animals, cysteine-dependent aspartate-specific proteases (caspases) play central roles in cytokine maturation. Although the proteolytic production of peptide cytokines is also essential for plant immunity, evidence for cysteine-dependent aspartate-specific proteases in regulating plant immunity is still limited. In this study, we found that the C-terminal proteolytic processing of a caspase-like substrate motif CNYD within Pathogenesis-related protein 1 (PR1) generates an immunomodulatory cytokine (CAPE9) in Arabidopsis. Salicylic acid enhances CNYD-targeted protease activity and the proteolytic release of CAPE9 from PR1 in Arabidopsis. This process involves a protease exhibiting caspase-like enzyme activity, identified as Xylem cysteine peptidase 1 (XCP1). XCP1 exhibits a calcium-modulated pH-activity profile and a comparable activity to human caspases. XCP1 is required to induce systemic immunity triggered by pathogen-associated molecular patterns. This work reveals XCP1 as a key protease for plant immunity, which produces the cytokine CAPE9 from the canonical salicylic acid signaling marker PR1 to activate systemic immunity. The protein PR1 is crucial for plant immunity but has unclear bioactivity. Here PR1 is shown to release a phytocytokine CAPE and trigger systemic acquired resistance (SAR) via a caspase-like enzyme specific for CAPE production (ESCAPE).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据