4.8 Article

Rapid inverse design of metamaterials based on prescribed mechanical behavior through machine learning

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-40854-1

关键词

-

向作者/读者索取更多资源

This study presents a rapid inverse design methodology using generative machine learning and desktop additive manufacturing to create metamaterials with nearly all possible mechanical behaviors. Results show that mechanical behavior with full tailorability can be achieved with nearly 90% fidelity between target and experimentally measured results.
Designing and printing metamaterials with customizable architectures enables the realization of unprecedented mechanical behaviors that transcend those of their constituent materials. These behaviors are recorded in the form of response curves, with stress-strain curves describing their quasi-static footprint. However, existing inverse design approaches are yet matured to capture the full desired behaviors due to challenges stemmed from multiple design objectives, nonlinear behavior, and process-dependent manufacturing errors. Here, we report a rapid inverse design methodology, leveraging generative machine learning and desktop additive manufacturing, which enables the creation of nearly all possible uniaxial compressive stress-strain curve cases while accounting for process-dependent errors from printing. Results show that mechanical behavior with full tailorability can be achieved with nearly 90% fidelity between target and experimentally measured results. Our approach represents a starting point to inverse design materials that meet prescribed yet complex behaviors and potentially bypasses iterative design-manufacturing cycles. Mechanical behavior of a material is captured by a measured stress-strain curve upon loading. Here, the authors report a rapid inverse design methodology via machine learning and 3D printing to create metamaterials with mechanical behavior that replicates a user-prescribed stress-strain curve.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据