4.8 Article

Electric control of spin transitions at the atomic scale

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-42287-2

关键词

-

向作者/读者索取更多资源

Electric control of spin resonance transitions in single TiH molecules is achieved using electron spin resonance scanning tunneling microscopy (ESR-STM). The ESR signal shows significant bias voltage dependent shifts, about ten times its line width, attributed to the electric field in the tunnel junction. The electric field induces a displacement of the spin system, changing the g-factor and the effective magnetic field of the tip. Direct electric control of spin transitions in coupled TiH dimers is demonstrated.
Electric control of spins has been a longstanding goal in the field of solid state physics due to the potential for increased efficiency in information processing. This efficiency can be optimized by transferring spintronics to the atomic scale. We present electric control of spin resonance transitions in single TiH molecules by employing electron spin resonance scanning tunneling microscopy (ESR-STM). We find strong bias voltage dependent shifts in the ESR signal of about ten times its line width. We attribute this to the electric field in the tunnel junction, which induces a displacement of the spin system changing the g-factor and the effective magnetic field of the tip. We demonstrate direct electric control of the spin transitions in coupled TiH dimers. Our findings open up new avenues for fast coherent control of coupled spin systems and expands on the understanding of spin electric coupling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据