4.8 Article

Designing main-group catalysts for low-temperature methane combustion by ozone

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-39541-y

关键词

-

向作者/读者索取更多资源

Automated reaction route mapping is used to design catalysts for low-temperature CH4 combustion with ozone. A suitable proton-type zeolite catalyst with Bronsted acid sites was predicted and shown to have superior performance in CH4 combustion.
Automated reaction route mapping is used to design catalysts for low-temperature CH4 combustion with ozone. A suitable proton-type zeolite catalyst with Bronsted acid sites was predicted and shown to have superior performance in CH4 combustion. The catalytic combustion of methane at a low temperature is becoming increasingly key to controlling unburned CH4 emissions from natural gas vehicles and power plants, although the low activity of benchmark platinum-group-metal catalysts hinders its broad application. Based on automated reaction route mapping, we explore main-group elements catalysts containing Si and Al for low-temperature CH4 combustion with ozone. Computational screening of the active site predicts that strong Bronsted acid sites are promising for methane combustion. We experimentally demonstrate that catalysts containing strong Bronsted acid sites exhibit improved CH4 conversion at 250 & DEG;C, correlating with the theoretical predictions. The main-group catalyst (proton-type beta zeolite) delivered a reaction rate that is 442 times higher than that of a benchmark catalyst (5 wt% Pd-loaded Al2O3) at 190 & DEG;C and exhibits higher tolerance to steam and SO2. Our strategy demonstrates the rational design of earth-abundant catalysts based on automated reaction route mapping.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据