4.8 Article

Custom tuning of Rieske oxygenase reactivity

期刊

NATURE COMMUNICATIONS
卷 14, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41467-023-41428-x

关键词

-

向作者/读者索取更多资源

By combining structural analyses, substrate and rational protein-based engineering, this study elucidates the architectural trends that govern catalytic outcome in the Rieske monooxygenase TsaM and provides strategies to custom tune Rieske oxygenase reaction outcomes.
Rieske oxygenases use a Rieske-type [2Fe-2S] cluster and a mononuclear iron center to initiate a range of chemical transformations. However, few details exist regarding how this catalytic scaffold can be predictively tuned to catalyze divergent reactions. Therefore, in this work, using a combination of structural analyses, as well as substrate and rational protein-based engineering campaigns, we elucidate the architectural trends that govern catalytic outcome in the Rieske monooxygenase TsaM. We identify structural features that permit a substrate to be functionalized by TsaM and pinpoint active-site residues that can be targeted to manipulate reactivity. Exploiting these findings allowed for custom tuning of TsaM reactivity: substrates are identified that support divergent TsaM-catalyzed reactions and variants are created that exclusively catalyze dioxygenation or sequential monooxygenation chemistry. Importantly, we further leverage these trends to tune the reactivity of additional monooxygenase and dioxygenase enzymes, and thereby provide strategies to custom tune Rieske oxygenase reaction outcomes. Rieske oxygenase chemistry is important for biochemical pathways, but it remains elusive how a common protein scaffold can be predictively tuned to catalyze divergent reactions. Here, the authors report a strategy that can rationally tune TsaM, a Rieske monooxygenase to catalyze dioxygenation and sequential monooxygenation reactions, and customize the reactivity of other Rieske oxygenases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据