4.1 Article

Role of the antioxidant defence system and telomerase in arsenic-induced genomic instability

期刊

MUTAGENESIS
卷 31, 期 6, 页码 661-667

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mutage/gew034

关键词

-

向作者/读者索取更多资源

Arsenic (AS) is a reactive oxygen species (ROS)-inducer carcinogen, whose mode of action is still unclear. To defend against ROS, cells use enzymatic and non-enzymatic antioxidants, such as superoxide dismutase (SOD) and catalase. Failure of antioxidant systems (AXS) can result in dicentric chromosomes formation as well as telomere associations for the reduced activity of telomerase. In order to clarify the long-term effects of a past AS exposure, we evaluated the efficiency of the AXS and the telomerase activity in the progeny of arsenite-treated cells named ASO (arsenic shake-off) cells, previously obtained from arsenite-treated V79 cells and selected by shake-off. Despite SOD1 expression level correlated to the level of ROS observed over time, no changes of the relative amount of antioxidant activities were observed in ASO cells. Moreover, we found that clones characterised by low levels of SOD1 and high levels of ROS acquired a transformed phenotype. Treatment with 5-azacytidine determined an increase of SOD1 expression in a clone and decrease in one other, suggesting that aberrant DNA methylation may be responsible for the abnormal expression of SOD1 or SOD1 inhibitor genes in different clones. TRAP assay results showed that the progeny of arsenite-treated cells were characterised by a time-dependent decrease of telomerase activity. Integrated results suggest that the increases of ROS levels are accompanied by defective telomerase activity. Finally, we propose that cells escaping the arsenite-induced death perpetuated the memory of past exposure via ROS likely because antioxidant and telomerase activity impairment and ultimately acquire a transformed phenotype.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据