4.4 Article

Synthesis, anti-amoebic activity and molecular docking simulation of eugenol derivatives against Acanthamoeba sp.

期刊

SAUDI PHARMACEUTICAL JOURNAL
卷 31, 期 9, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jsps.2023.101703

关键词

Synthesis; Anti -amoebic; Cytotoxicity; Eugenol derivatives; MTT assay

向作者/读者索取更多资源

This study synthesized and screened nine eugenol derivatives for their potential antiamoebic activity against Acanthamoeba infections, demonstrating their effectiveness.
Amoebae of the genus Acanthamoeba can cause diseases such as amoebic keratitis and granulomatous amoebic encephalitis. Until now, treatment options for these diseases have not been fully effective and have several drawbacks. Therefore, research into new drugs is needed for more effective treatment of Acanthamoeba infections. Eugenol, a phenolic aromatic compound mainly derived from cloves, has a vari-ety of pharmaceutical properties. In this study, nine eugenol derivatives (K1-K9), consisting of five new and four known compounds, were synthesized and screened for their antiamoebic properties against Acanthamoeba sp. The structure of these compounds was characterized spectroscopically by Fourier transform infrared (FTIR), Ultraviolet-Visible (UV-Vis), 1H and 13C Nuclear Magnetic Resonance (NMR) and mass spectrometer (MS). The derived molecules were screened for antiamoebic activity by determin-ing IC50 values based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and observation of amoeba morphological changes by light and fluorescence microscopy. Most of the tested compounds possessed strong to moderate cytotoxic effects against trophozoite cells with IC50 values ranging from 0.61 to 24.83 lg/mL. Observation of amoebae morphology by light microscopy showed that the compounds caused the transformed cells to be roundish and reduced in size. Furthermore, fluores-cence microscopy observation using acridine orange (AO) and propidium iodide (PI) (AO/PI) staining showed that the cells have damaged membranes by displaying a green cytoplasm with orange-stained lysosomes. Acidification of the lysosomal structure indicated disruption of the internal structure of Acanthamoeba cells when treated with eugenol derivatives. The observed biological results were also con-firmed by interaction simulations based on molecular docking between eugenol derivatives and Acanthamoeba profilin. These interactions could affect the actin-binding ability of the protein, disrupting the shape and mobility of Acanthamoeba. The overall results of this study demonstrate that eugenol derivatives can be considered as potential drugs against infections caused by Acanthamoeba.& COPY; 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据