4.7 Article

Adaptation to bile and anaerobicity limits Vibrio cholerae phage adsorption

期刊

MBIO
卷 -, 期 -, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mbio.01985-23

关键词

bacteriophages; phage defense; outer membrane; lipopolysaccharide

向作者/读者索取更多资源

Bacteriophages play a crucial role in the evolution and dynamics of bacterial populations, and bacteria can protect themselves from phage infection by modifying the availability of cellular resources. This study reveals the importance of a weak acid tolerance system in protecting bacteria from phage predation.
Bacteriophages (viruses of bacteria) play a pivotal role in shaping both the evolution and dynamics of bacterial populations. Bacteria employ arsenals of genetically encoded phage defense systems, but can alternatively achieve protection by changing the availability of cellular resources that phages rely on for propagation. These physiological changes are often adaptive responses to unique environmental signals. The facultative pathogen Vibrio cholerae adapts to both aquatic and intestinal environments with niche-specific physiological changes that ensure its evolutionary success in such disparate settings. In both niches, V. cholerae is susceptible to predation by lytic phages like ICP1. However, both phages and susceptible bacterial hosts coexist in nature, indicating that environmental cues may modulate V. cholerae cell state to protect against phage infection. This work explores one such modification in response to the intestine-specific signals of bile and anaerobicity. We found that V. cholerae grown in these conditions reduces O1-antigen decoration on its outer membrane lipopolysaccharide. Because the O1-antigen is an essential moiety for ICP1 phage infection, we investigated the effect of partial O1-antigen depletion as a mechanism of phage defense and observed that O1-depletion limits phage adsorption. We identified mechanistic contributions to O1-depletion, including the essentiality of a weak acid tolerance system for O1 production at low pH and alterations in transcriptional profiles indicating limitations in resources for O1-biosynthesis. This analysis illustrates a complex interplay between signals relevant to the intestinal environment and bacterial physiology that provides V. cholerae with protection from phage predation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据