4.6 Article

Characterization of Epizootic Hemorrhagic Disease Virus Serotype 8 in Naturally Infected Barbary Deer (Cervus elaphus barbarus) and Culicoides (Diptera: Ceratopogonidae) in Tunisia

期刊

VIRUSES-BASEL
卷 15, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/v15071567

关键词

EHDV-8; whole genome sequencing; deer; Culicoides; vectors; Tunisia

类别

向作者/读者索取更多资源

EHDV-8 was found in deer carcasses in the national reserve of El Feidja, Jendouba, Northwestern Tunisia in 2021 and 2022. Insect vectors carrying EHDV-8, mainly Culicoides kingi and Culicoides oxystoma species, were collected in the areas surrounding Tozeur city in Southern Tunisia.
Epizootic hemorrhagic disease (EHD) is a Culicoides-borne disease of domestic and wild ruminants caused by EHD virus (EHDV). This virus circulates in multiple serotypes. In late September 2021, a novel strain belonging to EHDV-8 was reported in cattle farms in Central-Western Tunisia, and in the fall of 2022, the same virus was also detected in Italy and Spain. In the present study, we described EHDV-8 occurrence in deer and, a preliminary identification of the potential Culicoides species responsible for virus transmission in selected areas of Tunisia. EHDV-8 was identified in deer carcasses found in 2021 and 2022 in the national reserve of El Feidja, Jendouba, Northwestern Tunisia, and isolated on cell culture. Instead, insect vectors were collected in October 2021 only in the areas surrounding the city of Tozeur (Southern Tunisia) where EHDV-8 cases in cattle were confirmed. Morphological identification showed that 95% of them belonged to the Culicoides kingi and Culicoides oxystoma species and both species tested positive for EHDV-8 RNA. C. imicola was not detected in this collection and EHDV-8 RNA was not evidenced in vector pools collected in 2020, prior to official EHDV-8 emergence. EHDV whole genome sequences were also obtained directly from infected biological samples of deer and positive vectors. EHDV-8 sequences obtained from deer and vectors share a nucleotide identity ranging from 99.42 to 100% and amino acid identity from 99.18 to 100% across all genome segments with the EHDV-8/17 TUN2021 reference sequence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据