4.8 Article

Effects of organic additives on spectroscopic and molecular-level features of photo-induced dissolved organic matter from microplastics

期刊

WATER RESEARCH
卷 242, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2023.120272

关键词

Microplastics; Dissolved organic matter; Organic additives; Fluorescence EEM; FT-ICR-MS

向作者/读者索取更多资源

UV irradiation promotes the leaching of dissolved organic matter (MP-DOM) from both commercial and polymer microplastics (MPs), but polymer MPs release more. Commercial MP-DOM is characterized by protein/phenol-like components, while polymer MP-DOM is dominated by humic-like components. The presence of unsaturated structures generated in sunlit environments indicates the high environmental reactivity of polymer MPs and fully weathered plastics.
The environmental occurrence and impact of dissolved organic matter leached from microplastics (MP-DOM) has been the subject of increased research interest. Commercial plastics, which typically contain additives, are subject to natural weathering processes and can eventually lose their additives. However, the effects of organic additives in commercial microplastics (MPs) on the release of MP-DOM under UV irradiation remain poorly understood. In this study, four polymer MPs (polyethylene; PE, polypropylene; PP, polystyrene; PS, polyvinyl-chloride; PVC) and four commercial MPs, including a PE zip bag, a PP facial mask, a PVC sheet, Styrofoam, were subjected to leaching under UV irradiation, and the MP-DOM was characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and fluorescence excitation emission matrix-parallel factor analysis (EEM-PARAFAC). Although UV light promoted the leaching of MP-DOM from both MP groups, the amount released was more pronounced for the polymer MPs than for the commercial MPs. The commercial MP-DOM was characterized by a prominent protein/phenol-like component (C1), while a humic-like component (C2) prevailed in the polymer MPs. FT-ICR-MS identified a higher number of unique molecular formulas for the commercial than for the polymer MP-DOM. The unique molecular formulas of commercial MP-DOM included known organic additives and other breakdown products, while the polymer MP-DOM featured more pronounced unsaturated carbon structures in its identified unique formulas. Several molecular-level parameters showed significant correlations with fluorescence properties, such as CHO formulas (%) with C1 and condensed aromatic structure (CAS-like, %) with C2, suggesting the potential application of fluorescent components as an optical descriptor for the complex molecular-level composition. This study also revealed the possible high environmental reactivity of both polymer MPs and fully weathered plastics due to the unsaturated structures generated in sunlit environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据