4.8 Article

Environmental energy enhanced solar-driven evaporator with spontaneous internal convection for highly efficient water purification

期刊

WATER RESEARCH
卷 244, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2023.120514

关键词

Solar-driven interfacial evaporation; Water purification; Internal convection flow; Environmental energy; Phenol removal

向作者/读者索取更多资源

This study presents a three-dimensional bifunctional evaporator based on N-doped carbon (CoNC/CF) that can separate volatile organic compounds (VOCs) from fresh water by activating peroxymonosulfate (PMS). The evaporator achieves a high evaporation rate and satisfactory purification performance, making it a promising platform for wastewater treatment.
Solar-driven interfacial evaporation for water purification is limited by the structural design of the solar evaporator and, more importantly, by the inability to separate the water from volatile organic compounds (VOCs) present in the water source. Here, we report a three-dimensional (3D) bifunctional evaporator based on N-doped carbon (CoNC/CF), which enables the separation of fresh water from VOCs by activating PMS during the evaporation process with a VOC removal rate of 99%. There is abundant van der Waals interaction between peroxymonosulfate (PMS) and CoNC/CF, and pyrrolic N is confirmed as the active site for binding phenol, thus contributing to the separation of phenol from water. With the advantageous features of sufficient light absorption, adequate water storage capacity, and spontaneous internal convection flow on its top surface, the 3D evaporator achieves a high evaporation rate under one sun (1 kW/m2) at 3.16 kg/m2/h. More notably, through careful structural design, additional energy from the environment and water can be utilized. With such a high evaporation rate and satisfactory purification performance, this work is expected to provide a promising platform for wastewater treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据