4.8 Article

Enhancement of integrated nano-sensor performance comprised of electrospun PANI/carbonaceous material fibers for phenolic detection in aqueous solutions

期刊

WATER RESEARCH
卷 246, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2023.120709

关键词

Polyaniline; Carbon materials; Electrospinning; Sensor; Organic residues

向作者/读者索取更多资源

This manuscript discusses the fabrication of nano-sensors for phenolic detection in water samples. The PANI/CNM sensors show the best electrochemical properties, with PANI/rGO having a detection limit of 8.34 x 10-3 μm.
The detection of trace levels of organic residue in water samples is a key health issue. This manuscript describes the fabrication of integrated nano-sensors composed of electrospun microfibers consisting of a nanocomposite of carbonaceous materials (CNMs) containing polyaniline (PANI) and polycaprolactone (PCL) for phenolic detection in aqueous solutions. The morphology of the resulting microfiber composite was characterized by scanning electron microscopy. It revealed elongated fibers with a highly interconnected web-like pattern in the presence of reduced graphene oxide (rGO). Shorter microfibers were observed in the composite filled with multi-walled carbon nanotubes (MWCNTs), whereas large agglomerates were formed upon the incorporation of single walled CNTs (SWCNTs) and graphene 300 (G300). Comparative analysis showed that the PANI/CNM sensors exhibited the best electrochemical properties, in particular in the presence of rGO and MWCNTs, where greater electrical conductivity was achieved, i.e., 4.33 x 10-3 and 7.22 x 10-4 S/cm, respectively, as compared to the PANI-PCL sensor (3.79 x 10-4 S/cm). All the PANI/CNM sensors exhibited high sensitivity. Notably, PANI/rGO was found to have a detection limit of 8.34 x 10-3 mu M for aminophenol. All the sensors exhibited good selectivity in the presence of interference to detecting phenolic compounds in aqueous solutions, thus confirming their value for industrial applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据