4.8 Article

Floc aging: Crystallization and improving low molecular weight organic removal in re-coagulation

期刊

WATER RESEARCH
卷 243, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2023.120328

关键词

Iron; Coagulation; Flocs; Aging; Crystallinity

向作者/读者索取更多资源

It was found that aging resulted in increasing crystallization of the flocs, which can play a beneficial role in activating persulfate oxidant to remove the representative organics. Furthermore, acidification was also found to further improve the removal of low MW natural organics and tetracycline. These results show that aged flocs have a high potential of reuse for re-coagulation and activation of oxidants to enhance drinking water quality.
Iron coagulants have been used extensively in drinking water treatment. This typically produces substantial quantities of insoluble iron hydrolysis products which interact with natural and anthropogenic organic sub-stances during the coagulation process. Previous studies have shown that the removal of low molecular weight (MW) organics is relatively poor by coagulation, which leads to their presence during disinfection, with the formation of halogenated byproducts, and in treated water supplies as potentially biodegradable material. Currently, there is little knowledge about the changes that occur in the nature of coagulant flocs as they age with time and how such changes affect interactions with organic matter, especially low MW organics. To improve this deficiency, this study has investigated the variation of aged flocs obtained from two commonly used iron salts and their impact on representative organic contaminants, natural organic matter (NOM) and tetracycline anti-biotic (TC), in a real surface water. It was found that aging resulted in increasing crystallization of the flocs, which can play a beneficial role in activating persulfate oxidant to remove the representative organics. Furthermore, acidification was also found to further improve the removal of low MW natural organics and tetracycline. In addition, the results showed that the low MW fractions of NOM (<1 K Dalton) were substantially removed by the aging flocs. These results are in marked contrast to the poor removal of low MW organic sub-stances by conventional coagulation, with or without added oxidants, and show that aged flocs have a high potential of reuse for re-coagulation and activation of oxidants to reduce low MW organics, and enhance drinking water quality.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据