4.8 Article

Enhanced bacterial adhesion force by rifampicin resistance promotes microbial colonization on PE plastic compared to non-resistant biofilm formation

期刊

WATER RESEARCH
卷 242, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2023.120319

关键词

Rif resistance; Initial cell attachment; Biofilm on PE; Single -cell force spectroscopy

向作者/读者索取更多资源

In this study, the initial bacterial adhesion and subsequent biofilm growth of a Rifampin (Rif) resistant E. coli (RRE) and a normal gram-positive B. subtilis on plastic were investigated. The results showed that Rif resistance enhanced the adhesion force of RRE to plastic, possibly due to the higher secretion of extracellular polymeric substances (EPS) and higher ATP level of RRE in the presence of Rif. The study highlights the impact of antibiotic resistance on microbial colonization on plastic.
The microbial biofilm formed on plastics, is ubiquitous in the environment. However, the effects of antibiotic resistance on the development of the biofilm on plastics, especially with regard to initial cell attachment, remain unclear. In this study, we investigated the initial bacterial adhesion and subsequent biofilm growth of a rifampin (Rif) resistant E. coli (RRE) and a normal gram-positive B. subtilis on a typical plastic (polyethylene, PE). The experiments were conducted in different antibiotic solutions, including Rif, sulfamethoxazole (SMX), and kanamycin (KM), with concentrations ranging from 1 to 1000 & mu;g/L to simulate different aquatic environments. The AFM-based single-cell adhesion force determination revealed that Rif resistance strengthened the adhesion force of RRE to PE in the environment rich in Rif rather than SMX and KM. The enhanced adhesion force may be due to the higher secretion of extracellular polymeric substances (EPS), particularly proteins, by RRE in the presence of Rif compared to the other two antibiotics. In addition, the higher ATP level of RRE would facilitate the initial adhesion and subsequent biofilm growth. Transcriptome analysis of RRE separately cultured in Rif and SMX environments demonstrated a clear correlation between the expression of Rif resistance and the augmented bacterial adhesion and cellular activity. Biofilm biomass analysis confirmed the promotion effect of Rif resistance on biofilm growth when compared to non-resistant biofilms, establishing a novel association with the augmentation of microbial adhesion force. Our study highlights concerns related to the dissemination of antibiotic resistance during microbial colonization on plastic that may arise from antibiotic resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据