4.8 Article

Reclaimed water influences bacterioplankton and bacteriobenthos communities differently in river networks

期刊

WATER RESEARCH
卷 243, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2023.120389

关键词

Nitrogen cycle; Microbial community; Reclaimed water; Functional gene; River habitat

向作者/读者索取更多资源

Reclaimed water reuse is a promising strategy for addressing water scarcity, but its potential ecological impact remains largely unknown. This study aimed to elucidate the distinct effects of reclaimed water on bacterioplankton and bacteriobenthos communities in reclaimed water-receiving river networks. Significant differences in microbial composition were observed between the plankton and benthic habitats, and the association between wastewater treatment plants (WWTP) and benthic habitats was stronger. The study also revealed the biomarker and key module hub for bacterioplankton and bacteriobenthos communities, and highlighted the importance of nitrogen as a pollutant affecting the structure and ecological functions of microbial communities.
Reclaimed water reuse is a promising strategy for addressing water scarcity; however, its potential ecological impact remains largely unknown. In particular, the differential effects of reclaimed water on microbial communities in various habitats remain poorly understood. Here, we aimed to elucidate the distinct effects of reclaimed water on bacterioplankton and bacteriobenthos communities in reclaimed water-receiving river networks from multiple perspectives, including community structure, co-occurrence patterns, assembly mechanisms, and nitrogen cycle function. Significant differences in microbial composition were observed between the plankton and benthic habitats, and the average numbers of amplicon sequence variants (ASVs) that originated from the wastewater treatment plants (WWTP) sites were 310.0 and 613.3, respectively, indicating a stronger association between WWTP and benthic habitats. Random forest and network co-occurrence analyses identified the genus Clostridium_sensu_stricto as a biomarker and key module hub. The assembly of bacteriobenthos communities was driven primarily by deterministic processes (58.74% for River-S and 58.94% for WWTP-S), whereas for bacterioplankton communities, this proportion was reduced to 18.02% (River-W) and 19.09% (WWTP-W). The qPCR revealed a large difference in abundance between the N cycling related genes of bacteriobenthos (average 2.47 x 106 copies/ng) and bacterioplankton (average 3.11 x 103 copies/ng) communities, and different interaction patterns with functional genes. Variance partitioning analysis (VPA) indicated that nitrogen was the most important pollutant, affecting the structure and ecological functions of microbial communities. Moreover, pathway analysis suggested that the reuse of reclaimed water may have enhanced the N-cycling functions of microbial communities and the emission of nitrous oxide.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据