4.8 Article

The overlooked role of Cr(VI) in micropollutant degradation under solar light irradiation

期刊

WATER RESEARCH
卷 242, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2023.120309

关键词

Solar light; Cr(VI) system; Cr(V) intermediate; Hydroxyl radical (; OH); Micropollutants; Degradation pathway

向作者/读者索取更多资源

This study reports for the first time that solar light irradiation of hexavalent chromium (Cr(VI)) can effectively degrade various micropollutants. The solar light/Cr(VI) system increases the removal efficiency of selected micropollutants by 13.3-64.8% compared to direct solar photolysis. The major reactive species in this system is hydroxyl radical (&·OH).
Hexavalent chromium (Cr(VI)) is ubiquitous in natural environments, whereas its role in the transformation of coexisting contaminants may have been overlooked. In this work, it was reported for the first time that the irradiation of Cr(VI) by solar light (solar light/Cr(VI) system) could effectively degrade various micropollutants with different structures. The removal efficiency of selected micropollutants was increased by 13.3-64.8% by the solar light/Cr(VI) system compared to that by direct solar photolysis. Meanwhile, the oxidation rates were enhanced by 2.2-21.5 folds, while they were negligible by Cr(VI) oxidation alone. Experiments by specific scavengers, probe compounds, fluorescence absorbance, and electron spin resonance analysis demonstrated that hydroxyl radical (& BULL;OH) was the major reactive species in the solar light/Cr(VI) system. Further experiments showed that the generation of & BULL;OH was closely related to the intermediate Cr(V) generated from Cr(VI) reduction, and Cr(V) could be re-oxidized back to Cr(VI). Increasing solution pH negatively affected model micropollutant (carbamazepine (CBZ)) degradation by the solar light/Cr(VI) system, mainly due to the decreased quantum yield of & BULL;OH at higher pH. Coexisting sulfate ions showed negligible effect on CBZ degradation in the solar light/Cr(VI) system, while the presence of bicarbonate, chloride, and humic acid inhibited CBZ degradation to varying degrees, owing to their diverse scavenging effects on & BULL;OH. Furthermore, moderate CBZ degradation was also achieved by natural solar light photolysis of Cr(VI). This study demonstrated the pivotal role of Cr(VI) in the transformation of micropollutants under solar irradiation, which advances the understanding of the fate of micropollutants in natural environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据