4.6 Article

A novel strategy for estimating the diffusion behavior of hydrogen in metallic materials with the combined effect of stress corrosion and hydrogenation: Case study of 2.25Cr-1Mo-0.25V high-strength steel

期刊

VACUUM
卷 219, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.vacuum.2023.112751

关键词

2.25Cr-1Mo-0.25V steel; Electrochemical hydrogen charging; Hydrogen embrittlement; Stress corrosion; Hydrogen diffusivity

向作者/读者索取更多资源

This study proposed a new strategy to indirectly estimate the hydrogen diffusivity of metallic materials under tensile stress by combining the electrochemical hydrogen permeation test (EHPT), the hydrogen diffusion descriptive equation based on Fick's law, and hydrogen pre-charged tensile test. The results showed that the hydrogen permeation curve obtained was highly approximate to the theoretical trend. The hydrogen embrittlement (HE) susceptibility of the specimens increased with increasing stress.
Hydrogen equipment for long-term service in complex hydrogen environment is threatened by the phenomenon of hydrogen-induced damage, and the combined effect of stress corrosion and hydrogen attack can intensify the formation and development of hydrogen damage. In this study, a new strategy to indirectly estimate the hydrogen diffusivity of metallic materials under tensile stress was proposed by combining the electrochemical hydrogen permeation test (EHPT), the hydrogen diffusion descriptive equation based on Fick's law, and hydrogen pre-charged tensile test. The results revealed that the hydrogen permeation curve obtained after considering the effect of the residual hydrogen extraction stage was highly approximate to the theoretical trend. The hydrogen embrittlement (HE) susceptibility of the pre-tensioned tensile and hydrogen-charged specimens increased with increasing stress. At tensile stress (0-400 MPa) the effective hydrogen diffusivity of 2.25Cr-1Mo0.25 V steel was: Deff = 1.1686+ 0.4842 x exp(sigma /277.869). The micrograph from the fracture surfaces also reflected the aggravated brittle fracture characteristics of the steel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据