4.7 Review

Controlling the critical parameters of ultrasonication to affect the dispersion state, isolation, and chiral nematic assembly of cellulose nanocrystals

期刊

ULTRASONICS SONOCHEMISTRY
卷 99, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ultsonch.2023.106581

关键词

Cellulose nanocrystals; Ultrasonication; Dispersion; Extraction; Self-assembly

向作者/读者索取更多资源

Ultrasonication is an effective method for extracting and processing plant-based cellulose nanocrystals. It can optimize the properties of CNCs for the fabrication of sustainable materials. The parameters of ultrasonication, such as time, amplitude, and energy input, play a dominant role in reducing particle size and altering morphology. Furthermore, ultrasonication also impacts the dispersion state and surface chemistry of CNCs. This technology has important implications for the design of photonic materials using nanocrystal-based celluloses.
Cellulose nanocrystals (CNCs) are typically extracted from plants and present a range of opto-mechanical properties that warrant their use for the fabrication of sustainable materials. While their commercialization is ongoing, their sustainable extraction at large scale is still being optimized. Ultrasonication is a well-established and routinely used technology for (re-) dispersing and/or isolating plant-based CNCs without the need for additional reagents or chemical processes. Several critical ultrasonication parameters, such as time, amplitude, and energy input, play dominant roles in reducing the particle size and altering the morphology of CNCs. Interestingly, this technology can be coupled with other methods to generate moderate and high yields of CNCs. Besides, the ultrasonics treatment also has a significant impact on the dispersion state and the surface chemistry of CNCs. Accordingly, their ability to self-assemble into liquid crystals and subsequent superstructures can, for example, imbue materials with finely tuned structural colors. This article gives an overview of the primary functions arising from the ultrasonication parameters for stabilizing CNCs, producing CNCs in combination with other promising methods, and highlighting examples where the design of photonic materials using nanocrystalbased celluloses is substantially impacted.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据