4.7 Article

A spatial stability theory of thin-walled steel beams pre-stressed by spatially inclined un-bonded cables and its FE formulation

期刊

THIN-WALLED STRUCTURES
卷 194, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2023.111308

关键词

Pre-stressed thin-walled beam; Lateral-torsional buckling; FEM; Un-bonded cable; Spatially inclined cable

向作者/读者索取更多资源

A spatial stability theory of mono-symmetric thin-walled steel beams pre-stressed by spatially inclined cables is derived and its validity is demonstrated through numerical examples. The effects of initial tension, deviator numbers, inclined cable profiles, and bonded/un-bonded conditions on lateral-torsional buckling of the pre-stressed beams are investigated, with a specific emphasis on the effects of increasing initial tension.
A spatial stability theory of mono-symmetric thin-walled steel beams pre-stressed (PS) by spatially inclined cables is firstly derived using an energy method where it is assumed that deviators are rigid. Its FE formulation is then presented under bonded/un-bonded multi-deviator conditions. After that, validity and accuracy of the present formulation is demonstrated through numerical examples. Finally, effects of initial tension, deviator numbers, inclined cable profiles, and un-bonded/bonded conditions on lateral-torsional buckling (LTB) of the PS bi-/mono-symmetric beams are investigated under external loadings. Particularly, new findings on LTB characteristics of the PS beams are presented with a specific emphasis on the effects of increasing initial tension.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据