4.7 Article

A new mixed node-based solid-like finite element method (MNS-FEM) for laminated shell structures

期刊

THIN-WALLED STRUCTURES
卷 192, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2023.111126

关键词

Node-based background; Mixed solid-shell; Finite elements; Buckling analysis; Slender structures; Composites

向作者/读者索取更多资源

This paper investigates a new solid-shell finite element formulation, which introduces new stress variables and an extra smoothing region to improve the accuracy of the approximate solutions. The assumed natural strain and discrete shear gap techniques are employed to alleviate trapezoidal and shear locking. The proposed method successfully solves popular benchmark tests and avoids cross-diagonal meshes.
A new solid-shell finite element formulation is investigated in this paper. Departing from the S-FEM concept of node-based stress smoothing scheme, a new pattern that introduces new stress variables linked with an extra smoothing region inside the element is proposed. This finding preserves all the advantageous features of the standard NS-FEM but it makes approximate solutions much more accurate. The assumed natural strain (ANS) and the Discrete shear gap (DSG) techniques are employed to alleviate trapezoidal and shear locking. The simple assumptions made allow the analytical computation of the discrete operators based on the node based backgrounds making the model particularly efficient. Popular benchmark tests are successfully solved for structured and unstructured triangular meshes in linear and buckling analysis. Numerical results show that the proposed method avoids cross-diagonal meshes, which reduces the generality of three-node degenerated shell elements proposed in the literature. This aspect makes the present formulation much more appealing than the published methods available in the literature. Moreover, in the context of the S-FEMs it is the first time in which geometric nonlinear contributions are presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据