4.7 Article

Full-scale fire resistance tests of lightweight steel framed floor systems

期刊

THIN-WALLED STRUCTURES
卷 192, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2023.111117

关键词

Cold-formed steel section; Full-scale test; Fire resistance; Lipped channel beam; LSF floor systems

向作者/读者索取更多资源

As the use of cold-formed steel profiles for load-bearing structural systems increases, their fire design needs specific attention due to their thin-walled nature. This article describes two standard fire resistance tests on full-scale light gauge steel frame floors made of cold-formed steel, providing new data on the response of unprotected cold-formed steel floor systems subjected to fire.
As cold-formed steel profiles are increasingly used for load-bearing structural systems, their fire design requires specific attention due to their thin-walled nature and high slenderness. In some specific applications such as in storage hall floor systems, these structures are used without sheathing or thermal protection on the fire-exposed side. Yet, there is a lack of data from fire resistance tests on full-scale load-bearing thin-walled steel structures, especially with directly exposed steel. This article describes two standard fire resistance tests on full-scale light gauge steel frame floors made of cold-formed steel lipped channel girders and joists topped by chipboard panels. The experimental program was designed to investigate the fire resistance of the unprotected girders. A specificity of this program was that the girders were subjected to a low load level to probe the ability to achieve without passive fire protection a 30-min fire resistance rating typical for storage hall structures in the Czech Republic. The absence of protection resulted in differences in thermal gradients and bracing compared to common fire tests, as well as a very low degree of utilization leading to an expected failure temperature higher than 800 degrees C. The results showed that the two floors remained stable during the 30 min with limited deflections, but failed the deflection rate criteria after 24 and 22 min, respectively. Comparison is provided with the calculation methods from the Eurocodes. The presented results provide new data on the response of full-scale, unprotected coldformed steel floor systems subjected to fire, which can be used to calibrate numerical models and fire design methods outside of the range currently covered by the codes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据