4.6 Article

Refinements in embryo manipulation applied to CRISPR technology in livestock

期刊

THERIOGENOLOGY
卷 208, 期 -, 页码 142-148

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.theriogenology.2023.05.028

关键词

Gene editing; In vitro embryo production; Minimum volume vitrification; Early embryo transfer

向作者/读者索取更多资源

In this study, the developmental competence, pregnancy outcomes, and embryo survival and birth rate of CRISPR/Cas microinjected zygotes in large scale programs in sheep were evaluated. The results showed that the developmental rate of microinjected zygotes was lower than non-injected zygotes, but similar outcomes were achieved when the embryos were transferred into the uterine horn instead of the oviduct. Furthermore, vitrification of CRISPR/Cas microinjected embryos did not significantly affect pregnancy rate, embryo survival rate, and birth rate.
The implementation of CRISPR technology in large animals requires further improvements in embryo manipulation and transfer to be applied with commercial purposes. In this study we report (a) developmental competence of CRISPR/Cas microinjected zygotes subjected to in vitro culture in large scale programs in sheep; (b) pregnancy outcomes after early-stage (2-8-cell) embryo transfer into the oviduct or the uterine horn; and (c) embryo survival and birth rate after vitrification/warming of CRISPR/Cas microinjected zygotes. Experiment 1 consisted of a retrospective analysis to evaluate embryo developmental rate of in vitro produced zygotes subjected to CRISPR/Cas microinjection (n = 7,819) compared with a subset of non-microinjected zygotes (n = 701). Development rates to blastocyst on Day 6 were 20.0% for microinjected zygotes and 44.9% for non-injected zygotes (P < 0.05). In Experiment 2, CRISPR/ Cas microinjected zygotes were transferred on Day 2 after in vitro fertilization (2-8 cell embryos) into the oviductal ampulla (n = 262) or into the uterine horn (n = 276) in synchronized recipient ewes at prefixed time (i.e., approximately two days after ovulation). Pregnant/transferred recipients (24.0% vs. 25.0%), embryo survival/transferred embryos (6.9% vs. 6.2%), and born lambs/pregnant embryos (72.2% vs. 100.0%) did not differ significantly in the two groups. In Experiment 3, CRISPR/Cas microinjected zygotes were maintained under in vitro culture until blastocyst stage (Day 6), and subjected to vitrification/ warming via the Cryotop method (n = 474), while a subset of embryos were left fresh as control group (n = 75). Embryos were transferred into the uterine horn of recipient females at prefixed time 8.5 days after the estrous synchronization treatment (i.e., approximately six days after ovulation). Pregnancy rate (30.8% vs. 48.0%), embryo survival rate (14.8% vs. 21.3%), and birth rate (85.7% vs. 75.0%) were not different (P]NS) between vitrified and fresh embryos, respectively. In conclusion, the current study in sheep embryos reports (a) suitable developmental rate after CRISPR/Cas microinjection (i.e., 20%), even though it was lower than non-microinjected zygotes; (b) similar outcomes when Day 2-embryos were placed into the uterine horn instead of the oviduct, avoiding both time-consuming and invasive oviduct manipulation, and extended in vitro culture during one week; (c) promising pregnancy and birth rates obtained with vitrification of CRISPR/Cas microinjected embryos. This knowledge on in vitro embryo development, timing of embryo transfer, and cryopreservation of CRISPR/Cas microinjected zygotes have practical implications for the implementation of genome editing technology in large animals.& COPY; 2023 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据