4.5 Article

Patagonian landscape modeling during Miocene to Present-day slab window formation

期刊

TECTONOPHYSICS
卷 862, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.tecto.2023.229971

关键词

Slab window; Southern Patagonia; Inverse modeling; Isostatic rebound

向作者/读者索取更多资源

Southern Patagonia in southernmost South America is a world-class example of a slab window that formed due to the subduction of the South Chile Ridge. Using the FastScape numerical model, this study analyzed the landscape evolution and found that long-wavelength uplift geometry, including dynamic uplift and lithospheric rebound from thinning, was necessary from 12 million years ago to the Present day in order to replicate the youngest cooling ages and present-day topography.
The subduction of seismic oceanic ridges often results in the formation of slab windows, which can affect not only the heat flow and retroarc volcanism, but also the exhumation and topographic evolution of the upper plate. An active and world-class example of a slab window is southern Patagonia, in southernmost South America, which is related to the subduction of the seismic oceanic South Chile Ridge between the middle-late Miocene and the Present day. How the subduction of the ridge and formation of the slab window have influenced the evolution of the Patagonian landscape, exhumation and topography is still under debate. Some works have proposed orogenic deformation mostly affecting the Pacific margin and hinterland areas, or an inherited early Miocene tectonic relief generated before the slab window formation. Others have preferred epeirogenesis hypotheses, such as dynamic uplift or isostatic rebound as a result of lithospheric thinning associated with asthenospheric or lithospheric mantle changes. In this work, we analyze the landscape evolution at medium (orogen-scale) and long wavelengths (embracing the whole of southern Patagonia, from coast to coast) using FastScape a landscape numerical model. This program was coupled with an optimization scheme (the Neighborhood Algorithm) suitable for nonlinear inverse problems. The goodness (fit to data) of our landscape evolution models was evaluated using: i) cooling ages, and ii) maximum elevations, in order to provide constraints on the uplift rates, erosion efficiency and effective elastic thickness. We then used the best values to compare two forward models representing medium- versus long-wavelength processes. Our results indicate that long-wavelength uplift geometry (including dynamic uplift and/or lithospheric rebound from thinning) involving areas from the Andes to the Atlantic coast was required from 12 Myr to the Present day in order to reproduce not only the youngest cooling ages but also Present-day topography.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据