4.4 Article

Assimilation of TRMM Multisatellite Precipitation Analysis with a Low-Resolution NCEP Global Forecast System

期刊

MONTHLY WEATHER REVIEW
卷 144, 期 2, 页码 643-661

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/MWR-D-15-0149.1

关键词

Atm; Ocean Structure; Phenomena; Precipitation; Observational techniques and algorithms; Data quality control; Satellite observations; Models and modeling; Data assimilation

资金

  1. NASA [NNX11AH39G, NNX11AL25G, NNX13AG68G]
  2. NOAA [NA100OAR4310248, CICS-PAEK-LETKF11]
  3. Office of Naval Research (ONR) under the National Oceanographic Partnership Program (NOPP) [N000141010149]
  4. Japan Aerospace Exploration Agency (JAXA) Precipitation Measuring Mission (PMM)
  5. NASA [142960, NNX11AL25G, 474900, NNX11AH39G, 145131, NNX13AG68G] Funding Source: Federal RePORTER

向作者/读者索取更多资源

Current methods of assimilation of precipitation into numerical weather prediction models are able to make the model precipitation become similar to the observed precipitation during the assimilation, but the model forecasts tend to return to their original solution after a few hours. To facilitate the precipitation assimilation, a logarithm transformation has been used in several past studies. Lien et al. proposed instead to assimilate precipitation using the local ensemble transform Kalman filter (LETKF) with a Gaussian transformation technique and succeeded in improving the model forecasts in perfect-model observing system simulation experiments (OSSEs).In this study, the method of Lien et al. is tested within a more realistic configuration: the TRMM Multisatellite Precipitation Analysis (TMPA) data are assimilated into a low-resolution version of the NCEP Global Forecast System (GFS). With guidance from a statistical study comparing the GFS model background precipitation and the TMPA data, some modifications of the assimilation methods proposed in Lien et al. are made, including 1) applying separate Gaussian transformations to model and to observational precipitation based on their own cumulative distribution functions; 2) adopting a quality control criterion based on the correlation between the long-term model and observed precipitation data at the observation location; and 3) proposing a new method to define the transformation of zero precipitation that takes into account the zero precipitation probability in the background ensemble rather than the climatology. With these modifications, the assimilation of the TMPA precipitation data improves both the analysis and 5-day model forecasts when compared with a control experiment assimilating only rawinsonde data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据