4.7 Article

Failure probability estimation and detection of failure surfaces via adaptive sequential decomposition of the design domain

期刊

STRUCTURAL SAFETY
卷 104, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.strusafe.2023.102364

关键词

Failure probability; Adaptive refinement; Geometry approach; Sensitivity to rare events; Surrogate model; Divergence theorem

向作者/读者索取更多资源

This article proposes an algorithm for point selection and failure probability estimation in small to moderate dimension design domains. The algorithm improves failure probability estimation by progressively refining the boundary between safe and failure domains. It is particularly useful for situations where evaluating the performance function is expensive and the function is highly nonlinear, noisy, or discrete.
We propose an algorithm for selection of points from the design domain of small to moderate dimension and for failure probability estimation. The proposed active learning detects failure events and progressively refines the boundary between safe and failure domains thereby improving the failure probability estimation. The method is particularly useful when each evaluation of the performance function g(������������) is very expensive and the function can be characterized as either highly nonlinear, noisy, or even discrete-state (e.g., binary). In such cases, only a limited number of calls is feasible, and gradients of g(������������) cannot be used. The input design domain is progressively segmented by expanding and adaptively refining a mesh-like lock-free geometrical structure. The proposed triangulation-based approach effectively combines the features of simulation and approximation methods. The algorithm performs two independent tasks: (i) the estimation of probabilities through an ingenious combination of deterministic cubature rules and the application of the divergence theorem and (ii) the sequential extension of the experimental design with new points. The sequential selection of points from the design domain for future evaluation of g(������������) is carried out through a new decision approach, which maximizes instantaneous information gain in terms of the probability classification that corresponds to the local region. The extension may be halted at any time, e.g., when sufficiently accurate estimations are obtained. Due to the use of the exact geometric representation in the input domain, the algorithm is most effective for problems of a low dimension, not exceeding eight. The method can handle random vectors with correlated non-Gaussian marginals. When the values of the performance function are valid and credible, the estimation accuracy can be improved by employing a smooth surrogate model based on the evaluated set of points. Finally, we define new factors of global sensitivity to failure based on the entire failure surface weighted by the density of the input random vector.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据