4.7 Article

GABA and Glutamate in hMT plus Link to Individual Differences in Residual Visual Function After Occipital Stroke

期刊

STROKE
卷 54, 期 9, 页码 2286-2295

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/STROKEAHA.123.043269

关键词

hemianopia; magnetic resonance imaging; quality of life; stroke; survivors

向作者/读者索取更多资源

The concentration of neurotransmitters GABA and glutamate in the hMT+ region strongly predicted blind-field visual detection abilities, indicating that they may serve as biomarkers for the quality of residual visual processing in the blind field. However, these neurotransmitter levels did not correlate with visually evoked blood oxygenation level-dependent signal changes in the motion-sensitive region, suggesting a unique relationship between neurotransmitter concentrations and blind-field perception.
BACKGROUND:Damage to the primary visual cortex following an occipital stroke causes loss of conscious vision in the contralateral hemifield. Yet, some patients retain the ability to detect moving visual stimuli within their blind field. The present study asked whether such individual differences in blind field perception following loss of primary visual cortex could be explained by the concentration of neurotransmitters & gamma;-aminobutyric acid (GABA) and glutamate or activity of the visual motion processing, human middle temporal complex (hMT+).METHODS:We used magnetic resonance imaging in 19 patients with chronic occipital stroke to measure the concentration of neurotransmitters GABA and glutamate (proton magnetic resonance spectroscopy) and functional activity in hMT+ (functional magnetic resonance imaging). We also tested each participant on a 2-interval forced choice detection task using high-contrast, moving Gabor patches. We then measured and assessed the strength of relationships between participants' residual vision in their blind field and in vivo neurotransmitter concentrations, as well as visually evoked functional magnetic resonance imaging activity in their hMT+. Levels of GABA and glutamate were also measured in a sensorimotor region, which served as a control.RESULTS:Magnetic resonance spectroscopy-derived GABA and glutamate concentrations in hMT+ (but not sensorimotor cortex) strongly predicted blind-field visual detection abilities. Performance was inversely related to levels of both inhibitory and excitatory neurotransmitters in hMT+ but, surprisingly, did not correlate with visually evoked blood oxygenation level-dependent signal change in this motion-sensitive region.CONCLUSIONS:Levels of GABA and glutamate in hMT+ appear to provide superior information about motion detection capabilities inside perimetrically defined blind fields compared to blood oxygenation level-dependent signal changes-in essence, serving as biomarkers for the quality of residual visual processing in the blind-field. Whether they also reflect a potential for successful rehabilitation of visual function remains to be determined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据