4.7 Article

Protostellar disc formation enabled by removal of small dust grains

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stw1124

关键词

magnetic fields; MHD; circumstellar matter; stars: formation; cosmic rays

向作者/读者索取更多资源

It has been shown that a realistic level of magnetization of dense molecular cloud cores can suppress the formation of a rotationally supported disc (RSD) through catastrophic magnetic braking in the axisymmetric ideal MHD limit. In this study, we present conditions for the formation of RSDs through non-ideal MHD effects computed self-consistently from an equilibrium chemical network. We find that removing from the standard MRN distribution the large population of very small grains (VSGs) of similar to aEuro parts per thousand 10 to few 100 that dominate the coupling of the bulk neutral matter to the magnetic field increases the ambipolar diffusivity by similar to 1-2 orders of magnitude at densities below 10(10)/cm(-3). The enhanced ambipolar diffusion (AD) in the envelope reduces the amount of magnetic flux dragged by the collapse into the circumstellar disc-forming region. Therefore, magnetic braking is weakened and more angular momentum can be retained. With continuous high angular momentum inflow, RSDs of tens of au are able to form, survive, and even grow in size, depending on other parameters including cosmic ray ionization rate, magnetic field strength, and rotation speed. Some discs become self-gravitating and evolve into rings in our 2D (axisymmetric) simulations, which have the potential to fragment into (close) multiple systems in 3D. We conclude that disc formation in magnetized cores is highly sensitive to chemistry, especially to grain sizes. A moderate grain coagulation/growth to remove the large population of VSGs, either in the prestellar phase or during free-fall collapse, can greatly promote AD and help formation of tens of au RSDs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据