4.6 Article

Design and development of a piezoelectric-hydraulic hybrid actuator with quarter-wavelength tubes

期刊

SMART MATERIALS AND STRUCTURES
卷 32, 期 11, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-665X/acfc0b

关键词

piezoelectric hydraulic actuation; piezoelectric pump; piezoelectric actuator; flow pulsation; inertial force; quarter-wavelength tube

向作者/读者索取更多资源

This study embedded two tubes into a piezoelectric-hydraulic hybrid actuation system for the first time, which acted as mechanical bandstop filters to reduce liquid pulsation rate and minimize the influence of inertial force on the actuator, leading to significant improvement in its output performance.
The piezoelectric hydraulic actuator is a hybrid device consisting of a hydraulic pump driven by a piezoelectric stack connected to a hydraulic cylinder. For this type of piezoelectric actuator, the inertial force caused by the flow pulsation of the liquid will inhibit the movement of the piezoelectric vibrator and reduce its output performance. To solve these issues, two tubes were embedded into the piezoelectric-hydraulic hybrid actuation system for the first time to act as mechanical bandstop filters by interfering with the propagation of acoustic waves. The acoustic power transmission loss of the tube is derived from the one-dimensional wave equation. According to the experimental results, when the excitation frequency is close to the optimal operating frequency corresponding to the tubes, the liquid pulsation rate is reduced, the influence of inertial force on the actuator is weakened, and the output performance is relatively significantly improved. This strategy finally leads to a maximum no-load velocity of 153.5 mm s-1 and a maximum blocking force of 261.5 N for the hybrid actuator with 300 mm tubes; the maximum no-load velocity and blocking force of the hybrid actuator with 500 mm tubes are 94.45 mm s-1 and 230 N, respectively. Furthermore, this strategy can be used in other electrohydraulic actuators to enhance their capabilities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据