4.6 Article

An ensemble approach for enhancing generalization and extendibility of deep learning facilitated by transfer learning: principle and application in curing monitoring

期刊

SMART MATERIALS AND STRUCTURES
卷 32, 期 11, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1361-665X/acfde0

关键词

machine learning; deep learning; transfer learning; polymetric composites; curing monitoring

向作者/读者索取更多资源

The study proposes a transfer learning-based ensemble approach called SMART to address the limitations of poor generalization and extendibility in machine learning and deep learning methods. By conducting experiments on curing monitoring of polymeric composites, the effectiveness of SMART is validated and it is found to outperform conventional machine learning algorithms.
Machine learning (ML) and deep learning (DL) have exhibited significant advantages compared to conventional data analysis methods. However, the limitations of poor generalization and extendibility impede the broader application of these methods beyond specific learning tasks. To address this challenge, this study proposes a transfer learning-based ensemble approach called SMART. This approach incorporates synthetic minority oversampling technique, average reinforced interpolation, series data imaging, and fine-tuning. To validate the effectiveness of SMART, we conduct experiments on curing monitoring of polymeric composites and construct a hybrid dataset with highly heterogeneous features. We compare the performance of SMART with exemplary ML algorithms using conventional evaluation indicators, including Accuracy, Precision, Recall, and F1-score. The experimental results demonstrate that the SMART approach exhibits superior generalization capacity and extendibility, achieving indicator scores above 0.9900 in new scenarios. These findings suggest that the proposed SMART approach has the potential to break through the limitations of conventional ML and DL models, enabling wider applications in the industrial sectors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据