4.8 Article

In situ and General Multidentate Ligand Passivation Achieves Efficient and Ultra-Stable CsPbX3 Perovskite Quantum Dots for White Light-Emitting Diodes

期刊

SMALL
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.202305664

关键词

first-principles calculations; multidentate ligands; perovskite quantum dots; stability issue; white light-emitting diodes

向作者/读者索取更多资源

We have developed an in-situ and general multidentate ligand passivation strategy to achieve CsPbX3 PeQDs with near-unit photoluminescence quantum yield (PLQY) and significantly improved stability. This study accelerates the commercialization process of PeQDs in WLEDs.
Inorganic CsPbX3 perovskite quantum dots (PeQDs) show great potential in white light-emitting diodes (WLEDs) due to excellent optoelectronic properties, but their practical application is hampered by low photoluminescence quantum yield (PLQY) and especially poor stability. Herein, we developed an in-situ and general multidentate ligand passivation strategy that allows for CsPbX3 PeQDs not only near-unit PLQY, but significantly improved stability against storage, heat, and polar solvent. The enhanced optical property arises from high effectiveness of the multidentate ligand, diethylenetriaminepentaacetic acid (DTPA) with five carboxyl groups, in passivating uncoordinated Pb2+ defects and suppressing nonradiative recombination. First-principles calculations reveal that the excellent stability is attributed to tridentate binding mode of DTPA that remarkably boosts the adsorption capacity to PeQD core. Finally, combining the green and red PeQDs with blue chip, we demonstrated highly luminous WLEDs with distinctly enhanced operation stability, a wide color gamut of 121.3% of national television system committee, standard white light of (0.33,0.33) in CIE 1931, and tunable color temperatures from warm to cold white light readily by emitters' ratio. This study provides an operando yet general approach to achieve efficient and stable PeQDs for WLEDs and accelerates their progress to commercialization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据